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We compare the methods of statistical linearization, perturbation expan- 
sions, and projection operators for the approximate solution of nonlinear 
multimode stochastic equations. The model equations we choose for this 
comparison are coupled, nonlinear, first-order, one-dimensional complex 
mode rate equations. We show that the method of statistical linearization 
is completely equivalent to the neglect of certain well-defined diagrams in 
the perturbation expansion resulting in the first Kraichnan-Wyld approxi- 
mation, and to the retention of only Markovian terms in the projection 
operator method, i.e., those terms that are local in time. 

KEY W O R D S :  Stochastic processes; nonlinear processes; statistical 
linearization; perturbation expansions; projection operators. 

1. INTRODUCTION 

Nonlinear stochastic equations are frequently used to model nonlinear 
physical  systems. The technical  difficulties associated with the mathemat ica l  
and  physical  analyses o f  nonl inear  p rob lems  are well known f rom studies in 
turbulence,  3 analyt ica l  dynamics ,  ~2~ stat ist ical  mechanics,  ~8~ and  many  other  

areas  of  physics and appl ied  mathemat ics .  To c i rcumvent  these difficulties in 
prac t ica l  calculat ions,  one often specifies a p rocedure  for  replac ing the 
nonl inear  with a l inear  system with the hope  that  the character is t ic  behavior  
o f  the nonl inear  system can be ma in ta ined  with this replacement .  In  this 
paper  we investigate a number  of  such l inear  app rox ima t ions  and the re la t ions 
among  them. 
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When nonlinear phenomena are represented by linear equations, certain 
features of the interactions are always lost. This loss may or may not be 
important, depending upon the system and, more specifically, on the proper- 
ties under investigation. Thus, for instance, the possible appearance of soliton 
solutions due to coherent effects of nonlinear interactions can never be 
established with a linearized theory5 ~ On the other hand, the effects of the 
nonlinearities on the frequencies (of oscillatory systems), relaxation times, 
autocorrelation functions, and spectral densities can often be calculated, to a 
good approximation, by linearized theories. Of particular interest to us, in 
continuation of some of our earlier work, (5,6~ is the method of statistical 
linearization pioneered by Caughey (Ta~ and Crandall. (Tb~ 

The method of statistical linearization(5-7~ is a prescription for truncating 
the dynamic equations of nonlinear systems in a fluctuating environment. 
The procedure is to replace nonlinear functions by "statistically equivalent" 
linear functions in such a way that the mean square error due to the replace- 
ment be a minimum. Because of the success of this simple method in the 
calculation of the effects of nonlinearities in certain nonlinear systems, (6-a~ 
a critical examination of its physical and mathematical content is of great 
interest. To carry out such an examination, we consider a specific stochastic 
nonlinear multimode model and compare the linearized equations obtained 
by using statistical linearization with perturbation expansions obtained via 
diagrammatic analysis and with linearized equations obtained from a projec- 
tion operator technique. This comparison shows that the method of statistical 
linearization is equivalent to the "first Kraichnan-Wyld approximation" of 
perturbation theory, which is obtained by neglecting certain well-defined 
diagrams in the diagrammatic expansion. The results obtained from statistical 
linearization are also equivalent to those obtained using a projection operator 
technique if non-Markovian and some mode-mixing terms are neglected. 
This demonstration of equivalence places the method of statistical lineariza- 
tion on a more familiar and systematic footing as regards its use in problems 
of statistical physics. A formal analysis of the connection between these 
various methods of treating nonlinear equations will be presented elsewhere. (8~ 

2. THE M O D E L  

The nonlinear model we discuss here is that of a classical stochastic 
wave field. The time evolution of the field is given by a set of one-dimensional 
mode rate equations, 

d(k, t) + (ic% + ~,~)A(k, t) + F(A; k) = f~(t) (1) 

Here k denotes a mode index or wavenumber that can take on a continuous 
and/or discrete set of values determined by the symmetry of the system. We 
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will call a mode of wavenumber k the "k th  mode." A(k, t) is the time- 
dependent complex amplitude of the kth mode; it is just the Fourier coeffi- 
cient of the kth mode in a Fourier expansion of the field variable. For 
example, i f d ( x ,  t) is the field variable of interest in configuration space, then 

~ ( x ,  t) = ~ A(k, t) exp(ikx) (2) 
k 

The function F(A ; k) in Eq. (1) represents nonlinear interactions in the wave 
field. The function fk(t) is a stochastic term which fluctuates in time. It 
represents the effect of random perturbations on the mode amplitude A(k, t). 
The coefficients co k and :vk are the linear frequency and linear decay rate of the 
kth mode, respectively. 

In Eq. (2) and in the rest of this paper we assume that the wave spectrum 
is discrete. The continuum case can be constructed by simply replacing sums 
on k's by integrals. It should be noted that the choice of modes for a mode 
description of the system is not unique. Indeed, any complete set of basis 
functions can be used to represent the field variable of interest and the 
resulting mode rate equations would appear different in each of these repre- 
sentations. The basis set is often chosen to exploit any symmetry properties 
that may exist in the configuration-space equation of evolution. There is, of  
course, a corresponding change in the interpretation of the index k with 
changes in the choice of basis functions. 

Nonlinearities that are products of field variables and field variable 
derivatives become convolutions when expressed in terms of mode ampli- 
tudes. For example, a quadratic term ~'2(x, t) when transformed according 
to Eq. (2) yields the nonlinear function 

r ( A ; k )  = ~, ~(k - kl - k~)A(kl, t)A(k~, t) (3) 
kl,k2 

where the Kronecker delta is replaced by a delta function in the continuum 
case. For the most general quadratic nonlinearity without time derivatives, 

~x T \ ~x ~ ~x p ! 

the nonlinear function F(A; k) is 

r (A;  k) = ~ 3(k - kl - k2)i'+~+"(k~ + k2)rk:~k2"A(kl, t)A(k2, t) (4) 
kl,k2 

where r, s, and p are integers. 
In Eq. (1) both the nonlinear term F(A;k )  and the fluctuating term 

fk(t) model nonlinear interactions in the physical system represented by this 
set of equations. To see this, consider a linear deterministic wave field, i.e., 
one described by the set of mode rate equations 

A(k, t) + (i~o~ + ~,~)A(k, t) = 0 (5) 
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The characteristic times of oscillation and damping of the kth mode in this 
linear wave field are 1/o0 k and l[Tk, respectively. The introduction of non- 
linear interactions may cause qualitative as well as quantitative changes in 
the evolution of the system. (9) In one range of interaction parameters the 
behavior of the system may be deterministic while another range of param- 
eters may cause essentially random behavior. For example, the nonlinear 
interactions in a fluid change the character of the flow from laminar to 
turbulent as one increases the Reynolds number of the flow. (1,1~ Non- 
linearities may therefore introduce randomness into the wave field. In (1) we 
have assumed that the nonlinearities can be separated into two different parts 
represented by F(A; k) andf~(t). This partition arises from the comparison of 
time scales of variations in the mode amplitudes induced by the nonlinear 
interactions with the characteristic times of oscillation (1/o~) and damping 
(1/7~) in the linear wave field. Nonlinearities that induce variations in A(k, t) 
over a time scale TNL > 1/o~, i.e., variations that are slower than or com- 
parable to the oscillations of the linear system, are modeled by the deter- 
ministic nonlinear function F(A; k). If  TNL >> 1/co~, then this nonlinear 
interaction is considered to be weak. Nonlinear interactions that induce 
variations that are fast compared to the characteristic times of the linear 
system, i.e., over a time scale TsT such that TsT << 1/~% and TST << 1/Tk, are 
modeled by the stochastic termfk(t). The introduction of this stochastic term 
permits one to consider the effect of these high-frequency changes, i.e., 
fluctuations, in A(k, t) without having to specify the form of the nonlinear 
interactions that give rise to them in detail. Finally, any rapid fluctuations 
induced in the mode amplitudes by externally applied forces are also included 
in fk(t). 

An example of a system which is represented by an equation of the form 
(1) is a many-mode laser described by (11) 

d(k, t) + (ioJg + yk)A(k, t) + ~ a(k, k')lA(k', t)12A(k, t) = fg(t) (6) 
k" 

This system has a cubic nonlinearity. The number of photons in the kth mode 
of the field is given by n(k, t) = A*(k, t)A(k, t). The evolution equation 
obtained for n(k, t) from (6) has a quadratic nonlinearity. Another example 
of a system that leads to coupled nonlinear stochastic mode rate equations is 
an anharmonic polyatomic molecule immersed in a heat bath (see, e.g., 
Ref. 12). 

The choice 

1 i~z~ [A(k, t) + A*(k, 013 (7) F(A; k) = -~r~[A(k, t) + A*(k, t)] + 

where cck is a real coupling coefficient, leads to the Duffing oscillator equation 



Studies in Nonlinear Stochastic Processes 221 

for mode k provided the fluctuating term fk( t )  is purely imaginary. This is 
seen by writing the mode amplitude as 

A(k,  t) = Al(k ,  t) + (i[~ok)Az(k, t) (8) 

where Al(k ,  t) and A2(k, t) are real. Using this expression together with (7) 
in (1) yields 

d~(k, t) = A2(k, t) (9) 

d2(k, t) + 7kA2(k, t) + c%~A~(k, t) + akA~S(k, t) = --io~kfk(t) (10) 

Combining Eqs. (9) and (10) results in the Duffing oscillator equation for 
A~(k, t), i.e., 

A~(k, t) + 7kAy(k, t) + wk2A~(k, t) + akA~a(k, t) = - iwk f~( t )  ( l t )  

In this paper we consider the specific form of the nonlinearity 

F ( A ; k )  = a~ ~ 8(k + k3 - k~ - k2)A(kl ,  t )A(k2,  t)A*(k3,  t) (12) 
klk2~3 

where c~ k is a complex coupling coefficient which is a measure of the strength 
of the nonlinearity. Note that only certain forms of nonlinearities in con- 
figuration space yield a coupling coefficient a k that depends only on the single 
wavenumber k. We choose this form of coupling coefficient for convenience 
to avoid the proliferation of indices. More complicated nonlinearities can be 
handled by straightforward extensions of the procedures that we illustrate 
via our specific choice (12). 

Throughout this paper we assume that the fluctuating term fk( t )  in 
Eq. (1) has a Gaussian distribution with zero mean and second moments given 
by 

( f k ( t ) f * ( t ' ) )  = Dk 8(k - k ')  3(t - t ' )  

( fk( t ) f~ , ( t ' ) )  = ( f~* ( t ) f * ( t ' ) )  = 0 (13) 

where the coefficient D~ is a measure of the strength of the fluctuations of 
the kth mode. We are thus taking the noise to be delta-correlated in time, in 
agreement with the earlier statement thatf~(t) models interactions that cause 
very rapid random variations of the mode amplitudes. We also assume that 
there are no correlations between fluctuations of different modes. These 
assumptions imply that in configuration space 

( f ( x ,  t ) f*(x ' ,  t ' ) )  = D(x  - x ')  3(t - t ') (14) 

wheref(x, t) and D(x  - x ')  are inverse Fourier transforms of the quantities 
in Eq. (13). Equation (14) is a statement of the translational invariance of 
the fluctuations, i.e., the spatial correlations of fluctuations depend only on 
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the distance (x - x'). It should be noted that the simplifying assumptions of 
Eq. (13) and hence (14) may not be strictly valid for highly nonlinear systems. 

3. S O L U T I O N  OF THE LINEAR S T O C H A S T I C  S Y S T E M  

In the absence of the deterministic nonlinear interaction term F(A;  k), 
the mode amplitudes obey the equation 

,~(~ t) + (k% + ~,k)A(~ t) = fk(t) (15) 

where the superscript zero on the mode amplitudes denotes the linear system. 
This is the normal mode equation for the kth mode of a stochastic linear 
wave field. It has the form of a Langevin equation for a complex variable. 
Since we assume the driving force fk( t )  to have a delta-correlated Gaussian 
distribution, we can construct a Fokker-Planck equation for the probability 
distribution of the A(~ t) to determine the probability that a mode 
amplitude is in an interval (A (~ A(~ dA (~ at time t given its value 
initially. We denote the realization of A(~ t) by A(~ with 
A(~ t = O) = Uo, We then obtain the Fokker-Planck equation (13) 

-- ~u ~2p 0 (u 'P)  + (16) OP(u,ot t lu~ b'k + ic%) (uP) + (y~ - ie%)-ff~u* D~ ~u ~u* 

with the initial condition P(u, 0[u0) = 3(u - uo). The solution of Eq. (16) is 
the Gaussian distribution 

2),k 
e(u ,  t lu0) -- ~D~[1 - exp( -2yd) ]  

- Uo exp[-(y~ + ioJk)t][ 2 (17) 
x exp 2yk[UDk[1 -- exp(--2~,J)] 

At times long compared to the relaxation time (t >> I/yk) this distribution 
approaches the equilibrium distribution 

2~,k exp ( __~_ffkk [U[2 ) (18) P(u,  lu0) = 

independent of the initial value Uo. 
From these distributions we can obtain both the time-dependent and 

the equilibrium moments and correlation functions of the mode amplitudes. 
Thus, separating the real and imaginary parts of the mode amplitude, 

u = x + iy (19) 

we find its average value as a function of time to be 

(A(~ t )  =--- dy dx uP(u, t]uo) = Uo e x p ( - i ~  - yk)t (20) 
- - c o  oo  
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which vanishes as t --> ~ ,  i.e., 

(A(~ = 0 (21) 

The variance of the mode amplitude as a function of time is 

<lA(~ - <A(~ t> = (D~/27k)(1 -- e-2'k t) (22) 

which at equilibrium becomes 

(]A(~ - (A(~ = Dk/27~ (23) 

The brackets with the zero subscript ( ' " )o  indicate the ensemble average 
with respect to the equilibrium distribution (18) of  the linear system. 

4. S T A T I S T I C A L  L I N E A R I Z A T I O N  

We now consider the full nonlinear equation (1). The statistical lineariza- 
tion technique (5-7) replaces the nonlinear function F(A ; k) with a ~ statistically 
equivalent" linear function by requiring that the mean square error due to 
the replacement be a minimum. The average of A(k, t) at equilibrium is 
exactly reproduced by this condition and an approximate expression for the 
equilibrium variance is obtained. Although these first two moments are an 
incomplete representation of the complete distribution, they should suffice 
to obtain good approximations to the equilibrium second-order statistics of  
the system, i.e., to the variances, correlation functions, and spectral densities. 

For a large number of  physical systems the nonlinear function F(A ; k) 
can be expressed as a polynomial in the mode amplitudes, having quadratic, 
cubic, and higher order terms. To use the method of statistical linearization 
we restrict F(A; k) to odd polynomial terms in A(k, t), e.g., cubic as in Eq. 
(12) or higher order odd powers, 4 and then replace these terms by a linear 
term in A(k, t) with a single complex coefficient hk, 

F(A ; k) -+ hkA(k, t) (24) 

The mean square error A due to this replacement is 

iX = lim [F(A;k) - hkA(k, t)[ 2 dt (25) 

where we have shifted the initial conditions to t = -oo .  A variation of A 
with respect to hk such that 3A/~hk = 0 yields 

hk --- (A*(k, t)F(A; k))d([A(k, t)12)t (26) 

where the subscript t on the brackets ( ' " ) t  indicates a time average as in 
Eq. (25). The approximate linear equation that replaces (1) is then 

A(k, t) + (imp) + 7~))A(k, t) = fk(t) (27) 

4 Even nonlinearities often lead to instabilities and must thus be handled with special 
care. We avoid this problem here. 
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where 

~o~) = oJ k + Im h~ (28a) 

~,~) = ~,~ + Re hk (28b) 

The superscript (I) denotes "linearized" results. 
The evaluation of the frequency shift Im h~ and the relaxation rate 

shift Re hk from Eq. (26) requires knowledge of the time-dependent solution 
of Eq. (1) in order to perform the indicated time averages. The reason for 
searching for an approximation to the nonlinear equation (1), however, is 
precisely our inability to obtain such an exact solution. To get around this 
problem in the calculation of hk it is necessary to replace the time average in 
Eq. (26) by an equilibrium ensemble average. This is a valid procedure if the 
system is ergodic. To obtain the equilibrium distribution of the system (1) 
one can transform it to the corresponding Fokker-Planck equation based on 
our assumption of the Gaussian, delta-correlated, form of the fluctuating 
termf~(t), Eq. (13). This Fokker-Planck equation can in some cases be solved 
exactly for the equilibrium distribution. In those cases where such an analytic 
solution cannot be effected, one can obtain an approximate equilibrium 
solution for the calculation of the averages in (26) from the linearized 
equation (27). The equilibrium distribution of Eq. (27) is, in analogy with the 
equilibrium solution (18), 

27~) exp( 27~' [u[2) (29) e'"(u,  luo) 

Through 7(~ ) it contains the parameter hg. 
When the distribution (29) is used to form the ensemble averages of 

Eq. (26) one obtains an equation containing Re hk on both sides. This self- 
consistent expression can then be solved for Re hk to obtain the approximate 
relaxation rate shift of Eq. (28b). Now, Im hk is simply related to Re h~ and 
is used to calculate the approximate frequency shift of Eq. (28a). The Gaussian 
distribution (29) leads to a simplification of the expression (26) for hk since 
the higher moments of A(k,  t) can be simply related to the second moment. 
Thus, for instance, for the cubic nonlinearity (12) we obtain 

(a*(k) r (a ;  k)>, = ,~ ~ 3(k + k3 - kl - k2) 
klk2k3 

x (A*(k)A(kl )A(k2)A*(ks)) ,  

=a~ ~ 3 ( k + k s - k x - k 2 ) [ ~ ( k - k ~ ) 3 ( k 2 - k 3 )  
kxk2k3 

+ 3(k - k,~)a(kz - ks)](]A(k~)12),(lA(k2)[2), 

= ak(]A(k)[2), ~ ([A(k~)12),(2 - 3k~1) (30) 
kl 
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where the subscript l indicates an ensemble average with respect to the 
(linearized) equilibrium distribution (29). It can be noted from (30) that 
certain nonlinear contributions are entirely neglected by this linearization 
procedure, namely those terms o fF (A;  k) that do not contain the mode A(k). 
Thus if we rewrite the cubic nonlinear function (12) as 

F ( A ;  k) = 2 kA(k, t) [A(kl ,  t)[ 2 -  klA(k, t)[2A(k,  t) 
kl  

+ A(kl, t)A(k , t) (31) 
/czk2/c 8 r k 

then only the first two terms on the right-hand side of (31) contribute to 
(A*(k)F(A ; k))~ in (30). The prime on the summation indicates the restriction 
on wavenumber shown explicitly in (12). This formulation of statistical 
linearization thus amounts to the neglect of some of the "mode-mixing" 
terms [the triple sum in Eq. (31 ) ] and to the replacement of 2~k ~ 1  [A (kl, t) ] 2 _ 
~k[A(k, t)l 2 by the complex parameter hk.5 The approximate frequency and 
relaxation rate shifts are now given implicitly by the relations 

Aw(~ , =- Im hk = I m  ak ~ ([A(kl)12)z(2 - 8~ z) 

A72 ) - Re h~ = Re a~ ~ (]A(k~)[2)z(2 - 3kkl) (32) 
k:x 

Equations (27), (28), and (32) are the statistical linearization approximations 
to the full  nonlinear problem (1) for the particular nonlinearity (12). 

The use of (32) with (28a), (28b), and (27) now permits one to obtain 
various moments and correlation functions of  the mode amplitudes A(k, t). 
In a previous paper (6) we have made a detailed analysis of this method for a 
stochastically driven nonlinear oscillator (the Duffing oscillator) and have 
shown there that the results obtained via the method of statistical linearization 
are in good agreement with exact calculations. As shown in that paper and 
as also pointed out by Crandall, (vb) the use of the variance obtained from the 
exact equilibrium solution of the full nonlinear problem in the right-hand 
sides of (32), which then become explicit rather than implicit relations, leads 
to a significant improvement in the agreement with exact calculations. 

5. P E R T U R B A T I O N  T H E O R Y  

Perturbation solutions to nonlinear dynamic systems are notoriously 
difficult to construct (see, e.g., Ref. 14). In addition, the convergence proper- 

5 If the linearization (24) were replaced by one that includes linear coupling to other 
modes, i.e., F(A;k)--+ ~he~.A(k', t), then the triple sum in (31), i.e., the "mode- 
mixing" terms, could be included in statistical linearization. We intend to pursue this 
generalization in a subsequent paper. 
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ties of such perturbation series solutions, once they are constructed, are almost 
impossible to establish. Only recently have calculational techniques been 
developed that yield convergent general solutions to some model nonlinear 
systems. (15) We are not interested here in finding such a general perturbative 
solution to (1), but rather in determining which terms in the perturbation 
solution correspond to the linearization results in Section 4 and which do not. 

We again adopt the specific form of a cubic nonlinear driving force as 
given in Eq. (12). The~ mode rate equations (1) are now written as 

~d(k, t) + (k% + 7k)A(k, t) + ak ~ '  A(kl,  t)A(k2, t)A*(ka, t) = fk(t) (33) 

Fourier-transforming (33) in time according to 

A(k, co) = (27r) -~ dt A(k, t) exp(-icot) (34) 
oo 

yields 

Q~(oOA(k, ~o) = - ~  ~ '  A(kl, ~ol)A(k2, o~2)A*(k3, o~8) + X~(~o) (35) 
k,o3 

where 

Q~-I(~ = z~ + i(c% - co) (36) 

and where the "noise"  spectrum gk(oJ) is given by 

gk(oJ) = (2~r) -~ dtfk(t) exp(-- icot) (37) 
co 

The sum in (35) is over kl,  k2, ka and ~ol, ~o2, ~o a and is restricted in both wave- 
number and frequency by the conservation conditions 

kl + k 2 = k 8  + k ,  co 1 +o~ 2 = c o  a + o J  (38) 

As before, the summations in (35) are replaced by integrals for continuous 
wavenumbers and frequencies. 

The nonlinear integral equation that we must solve, therefore, is 

A(k, co) = A(~ co) - akQk(~o ) ~ '  A(k~, ~o~)A(k2, Go2)A*(k3, oJ8) (39) 

where 

A(~ co) = ak(o))gk(oJ) (40) 

is the Fourier transform of the linear mode amplitude defined by Eq. (15). 
Since A(~ t) and fk(t) are Gaussian random processes and since the 
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Fourier transform is a linear operation, A(~ o J) and gk(co) are also Gaussian. 
For simplicity we introduce the composite variable ~: = (k, w). We define the 
propagator 

S(~) =- (ak/a)Q(~) (41) 

where a can be interpreted as the average value of ak. Its actual value need 
not be known for our purposes. The parameter a will be used as an expansion 
parameter in the perturbation series and will be taken to be real. Equation 
(39) can be rewritten as 

A(~:) = A(~ - aS(f) ~ '  A(~I)A(~2)A*(fa) (42) 

Equation (42) is similar in structure to the Duffing oscillator equation studied 
by Morton and Corrsin (MC). (16) The detailed form of our propagator S(f) 
is different from theirs since they analyze a second-order equation, while (33) 
is first order. Also, the mode amplitudes here are complex, whereas the oscilla- 
tor displacements are real. There remains sufficient similarity, however, that 
the concepts developed in their diagrammatic technique for summing of 
perturbation series can be applied to the present problem. 

Following MC, we expand the mode amplitudes in the series 

A(~:) = A(~ + A(1)(f) + A(2)(~ :) + ... (43) 

where the superscripts indicate the implicit order of a in the terms of the 
series. By inserting (43) into (42) and equating coefficients of like powers of a, 
we obtain 

A(O)(sr ) = Q(~)g(~) 

A(1)(~) = -~S(~)  ~ '  A(~176176 

A(2)(f) = - a S ( f ) ~ '  [2A(~176 + A(~176 ] 

A~3)(~) = - ~ S ( ~ )  ~'  {2[A(~176 

+ A(~ + A(~176 

+ A(~)(~I)A~'(~2)A(~ (44) 

At each order in the hierarchy given by (44) one can insert the amplitudes 
from the preceding order, thereby obtaining expressions solely in terms of 
A(~162 the propagator S(r and the coupling coefficient a. When this is done, 
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all the terms in A(~)(~ :) are of O(a"), as they should be. Inserting (44) into (43) 
and writing only the first few terms yields 

A(~:) = A(~162 - aS(~)~'  A(~176176 

+ (~S(~) ~ '  {2A(~176 ~ '  A(~176176 

+ A(~176 ~ '  A(~176176 } 
~a 

+. . .  (45) 

One can now proceed as Morton and Corrsin and construct a diagrammatic 
representation of the terms in (45), specify the rules for taking the products in 
A(~)A*(~), and thereby obtain ([A(k)[2). 

We have carried out the indicated perturbation expansion via the usual 
lengthy and tedious diagrammatic analysis. We found that when one retains 
only those diagrams that correspond to the so-called "first Kraichnan-Wyld 
approximation ''(~6) one obtains 

g~(o~) (46) 
A(~)(~) = (Tk + 2Mk Re c~k) - i(co - c% - 2M~ Im a~) 

for the renormalized mode amplitude. The superscript r refers to renormalized 
quantities. The function Mk appearing in (46) is closely related to the renor- 
realized mean square amplitude and is given by 

i k  -- �89 ~ (]A(r'(kl)12)~(2 - 3kkl) (47) 
/1:1 

The function Mk must be obtained self-consistently using Eq. (46). The 
subscript r in (47) indicates an equilibrium ensemble average with respect to 
the renormalized equilibrium distribution. The above expression for A(T)(~) 
can be recognized as the time Fourier transform of the renormalized linear 
mode rate equation 

d(r)(k, t) + (ioJ(k ") + 7g))A(r)(k, t) = fk(t) (48) 

with 

~o(k ~) = oJ~ + 2Mk Im ak, Y(k r) = 7k + 2Mk Re c~ (49) 

The frequency and damping coefficients are thus shifted by 

Ar r) 2Mk Im ak, = AV(~ ~) = 2Mk Re ak (50) 

These results are identical to those obtained by statistical linearization as shown 
in Eq. (32). 6 

6 For  the specific case of the Duffing oscillator, the equivalence of the "first  Kra ichnan-  
Wyld approximat ion"  to the results of statistical linearization has already been pointed 
out  by MC. (Ira 
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It should be noted that the " improved" statistical linearization results 
obtained by calculating Mk using the exact equilibrium distribution of the 
nonlinear problem would correspond to retaining diagrams beyond those of 
the first Kraichnan-Wyld approximation. 

6. P R O J E C T I O N  O P E R A T O R  M E T H O D  

A formally exact solution of the full mode coupled problem (1) can be 
obtained with the projection operator method introduced by Zwanzig. (17) We 
use an extension of the method used by Bixon and Zwanzig as) in their analysis 
of the Duffing oscillator and begin by writing the Fokker-Planck equation 
for the conditional probability distribution P(u; t/u0) of the set of mode 
amplitudes u -= {A(k0} at time t given their initial values u0 - {A(k~, t = 0)}. 
Rather than dealing with the full nonlinear system (1), we consider the modi- 
fied set of mode rate equations 

.d(k, t) + (ioJ k + ~,k)A(k, t) + F'(A ; k) = A( t )  (51) 

where F'(A; k) consists of only those terms of F(A ; k) that explicitly contain 
the mode amplitude A(k, t). As seen from Eq. (31), the modified nonlinearity 
is thus given by 

F'(A; k) = 2~A(k, t) ~, [A(kl, t ) l  2 - e~kIA(k , t)12A(k, t) 
kl 

and differs from the full nonlinear function F(A; k) by 

(52a) 

F(A; k) - F'(A; k) = ~k ~ '  A(kl,  t)A(k2, t)*(ka, t) (52b) 

The terms on the right-hand side of (52b) are precisely the ones that are 
neglected in statistical linearization, as discussed in Section 4. Since our 
purpose here is to show how statistical linearization results can be obtained 
via the projection operator method and since these mode mixing terms 
introduce some complications in the method, we omit them from the outset. 

The conditional probability distribution P'(u;  t]uo) for the modified 
system (51) obeys the Fokker-Planck equation 

~3t = j=l ~ [(i~ + 7ks)uj + F'(u; kj)]P' + c.c. + Dkj. 0uj 0us* j (53) 

where uj ==- A(kj) and c.c. stands for the complex conjugate of all the preceding 
terms. The equilibrium solution of this Fokker-Planck equation is denoted 
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by P~q(U). The quantities of particular interest in the following derivation are 
the average mode amplitudes as a function of time, 

(uj; t )  = (A(kt); t~ = f ... f duuiP'(u;  tlUo) (54) 

where the shorthand notation du stands for 

N 

du - ~-~ dx i dy t (55) 
i=1 

with 

uj =- x s + iyj (56) 

We next introduce a projection operator ~ whose effect on an arbitrary 
function g(u) is 

~ g ( u )  -- P ~  ... dug(u)  

+ ~ <lujlb;J[ui* . . .  du uig(u ) + c.c.] (57) 
1 = 1  

The subscript eq' denotes an average with respect to the equilibrium distribu- 
tion PEa(U). The projected probability distribution ~ P '  is obtained from 
Eq. (57) with g(u) = P '(u;  t lu0) as 

~P ' (u ;  tlUo) = PEa(u) 1 + (lujl2>;J,[<ui; t)ui* + c.c.] (58) 
i=3. 

The motivation for choosing this particular projection operator is that the 
projected probability distribution :~P' yields the same average mode ampli- 
tude (A(k); t )  as does the full distribution function P ' .  

To see that this is the case, we rewrite the Fokker-Planck equation (53) as 

~- -?  = ~ 2~,~,1utl 2 + 4(Re %)lujl 2 ~ [u,[ 2 - 2 ( R e  ~k,)lujl 4 
I 

+ D ~ , ] P ' +  Og,luj[ 2 82P' "~ (59) 
e(lutl=)=J 

where we have used the explicit form (52a) for F'(A; k). From Eq. (59) we 
s e e  that the equilibrium solution P~q(u) depends only on the absolute square 
mode amplitude lui[ 2, thus giving the relations 

( / d j ) e q ,  = (UjUi)eq ,  = O, (ltj*Ui)eq, = 8,t([UilZ),a, (60) 
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By direct substitution it then follows that the projected probability distribu- 
tion preserves the average mode amplitude: 

f ...~ duugP'(u; t[Uo) 
N 

= (u)o~, + ~ dujlb~,E(upu>e~,<uj; 0 + <uju>oq4u~*; O] 
j = l  

= (u; t)  = (A(k); t )  (61) 

The second equality in (61) is obtained by using Eq. (60). 7 

The kinetic equation satisfied by the projected probability distribution P'  
is found by standard methods <18-2~ to be 

~P' = ~N~P'  - ds K(s)~P'(t - s) (62) 

Here N is the Fokker-Planck operator of Eq. (53) or of Eq. (59) (i.e., 
8P'/Ot = NP'), which appears in (62) in place of the usual Liouville operator. 
The kernel K(s) is the operator 

K(s) = -YN(1 - N)eS(1-a)e(l - ~ ) N ~  (63) 

The projected part of ~ P '  in (62) is found from (57) to be given by 

~ P '  = Pxo(u){ f ... f du ~ P ' ( u ;  t[Uo) 

+ ~ ([ujl2)~q~,[uj * f . . .  f duuj~P' (u;  t lu0)+ c.c.]} (64) 
.*'=1 

Inserting the explicit form of ~ from Eq. (53) into (64) and integrating by 
parts yields 

N 
~ e '  = e&(u) ~ (luj[ ~)~,~[- (i~% + ~%)(uj; t )uj* 

- (F'(u; kj); t)'up + c.c.] (65) 

where 
l" f" 

( F ' (u ;  k) ; t >' =- 3 "" J du F'(u; tc)~P'(u; t [Uo) (66) 

Finally, to obtain the equations of motion of the mean amplitudes we take 

7 Equation (61) with the projection operator as defined in (57) would not hold if we had 
retained the full nonlinear function F ( A ' ,  k). A more complicated projection operator 
would have to be defined in order for the average mode amplitudes to be preserved. 
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the partial derivative of (61) with respect to time and use (62), (64), and (60). 
The result is 

0 0 
0-7 <A(k); t) = b5 (u; t) 

= -(ioJk + rk)(u; t )  - <e'(u; k); t ) '  

J2 - ds K(s ) (u ;  t - s )  (67) 

The second term on the right-hand side of (67) is explicitly found from (66), 
(68), and (52) to be 

<F'(., k), tV = (2~,~ <lul=<lul=>o~ " y '  lu;l~>~ 

= hk(u; t )  

- ~ ' Q u ;  t) 
'~ <[ul >o~,1 

(68) 

Note that the parameter hk here is in fact the same as the statistical lineariza- 
tion parameter h~ of Eq. (26) with the nonlinearity F replaced by the modified 
nonlinearity F '  and with the time average replaced by the equilibrium 
ensemble average. (2~ The equation of motion for the average mode am- 
plitude then is 

(A(k); t )  = - ( i t %  + 7k + hk)(A(k); t )  - ds K(s ) (A(k ) ;  t - s )  (69) 

From Eq. (69) it is now readily established that the results of statistical 
linearization are recovered if the non-Markovian memory term is neglected. 
The resulting approximate kinetic equation is linear, with frequency and 
relaxation rate given by 

co~) = oJ k + Im hk, 7,~ ) = y~ + Re h~ (70) 

exactly as in (28a) and (28b). 
The actual evaluation of hk presents the same difficulties here as in 

Section 4 because, in general, we cannot obtain the exact equilibrium solution 
P~q(u), which is needed to evaluate the ensemble averages indicated in (68). 
It is thus again necessary to evaluate h~ by the self-consistent approximate 
method outlined in Section 4. 
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